A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount"
}
],
"id": "https://mathstodon.xyz/users/gregeganSF/statuses/109290905971976809",
"type": "Note",
"summary": null,
"inReplyTo": "https://mathstodon.xyz/users/gregeganSF/statuses/109283584820105620",
"published": "2022-11-05T11:14:40Z",
"url": "https://mathstodon.xyz/@gregeganSF/109290905971976809",
"attributedTo": "https://mathstodon.xyz/users/gregeganSF",
"to": [
"https://www.w3.org/ns/activitystreams#Public"
],
"cc": [
"https://mathstodon.xyz/users/gregeganSF/followers"
],
"sensitive": false,
"atomUri": "https://mathstodon.xyz/users/gregeganSF/statuses/109290905971976809",
"inReplyToAtomUri": "https://mathstodon.xyz/users/gregeganSF/statuses/109283584820105620",
"conversation": "tag:mathstodon.xyz,2022-11-02:objectId=28211198:objectType=Conversation",
"content": "<p>What else consists of two 24-cells in R^4?</p><p>The binary octahedral group, containing the 48 quaternions q, that when construed as rotations via:</p><p>x → q x q^{-1}</p><p>give symmetries of the octahedron with vertices ±i, ±j, ±k.</p><p>So … how can we link the Mermin grid to that group?</p><p>Consider the 3 × 3 grid of pairs of quaternions:</p><p>(j, j) (i, i) (k, k)<br />(i, k) (k, j) (j, i)<br />(k, i) (j, k) (i, j)</p><p>If we treat a pair of quaternions (r,s) as defining a rotation in R^4 via:</p><p>x → r x s^{-1}</p>",
"contentMap": {
"en": "<p>What else consists of two 24-cells in R^4?</p><p>The binary octahedral group, containing the 48 quaternions q, that when construed as rotations via:</p><p>x → q x q^{-1}</p><p>give symmetries of the octahedron with vertices ±i, ±j, ±k.</p><p>So … how can we link the Mermin grid to that group?</p><p>Consider the 3 × 3 grid of pairs of quaternions:</p><p>(j, j) (i, i) (k, k)<br />(i, k) (k, j) (j, i)<br />(k, i) (j, k) (i, j)</p><p>If we treat a pair of quaternions (r,s) as defining a rotation in R^4 via:</p><p>x → r x s^{-1}</p>"
},
"attachment": [],
"tag": [],
"replies": {
"id": "https://mathstodon.xyz/users/gregeganSF/statuses/109290905971976809/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/gregeganSF/statuses/109290905971976809/replies?min_id=109290910932627626&page=true",
"partOf": "https://mathstodon.xyz/users/gregeganSF/statuses/109290905971976809/replies",
"items": [
"https://mathstodon.xyz/users/gregeganSF/statuses/109290910932627626"
]
}
},
"likes": {
"id": "https://mathstodon.xyz/users/gregeganSF/statuses/109290905971976809/likes",
"type": "Collection",
"totalItems": 0
},
"shares": {
"id": "https://mathstodon.xyz/users/gregeganSF/statuses/109290905971976809/shares",
"type": "Collection",
"totalItems": 0
}
}