ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount", "blurhash": "toot:blurhash", "focalPoint": { "@container": "@list", "@id": "toot:focalPoint" } } ], "id": "https://mathstodon.xyz/users/csk/statuses/110454742459648912", "type": "Note", "summary": null, "inReplyTo": "https://mathstodon.xyz/users/csk/statuses/110454723575904775", "published": "2023-05-30T00:13:36Z", "url": "https://mathstodon.xyz/@csk/110454742459648912", "attributedTo": "https://mathstodon.xyz/users/csk", "to": [ "https://mathstodon.xyz/users/csk/followers" ], "cc": [ "https://www.w3.org/ns/activitystreams#Public" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/csk/statuses/110454742459648912", "inReplyToAtomUri": "https://mathstodon.xyz/users/csk/statuses/110454723575904775", "conversation": "tag:mathstodon.xyz,2023-05-29:objectId=52147834:objectType=Conversation", "content": "<p>Does that matter? Hang on, there&#39;s one more step! Because Tile(1,1) is equilateral, and because we&#39;re not using reflections, it&#39;s easy to modify its edges to *force* it to tile without reflections.</p><p>These shapes, which we call &quot;Spectres&quot;, are &quot;strict chiral aperiodic monotiles&quot;: shapes that are forced to tile aperiodically, and can&#39;t use reflections! If you objected to the hat because of its reflections, this is the shape for you. (6/n)</p>", "contentMap": { "en": "<p>Does that matter? Hang on, there&#39;s one more step! Because Tile(1,1) is equilateral, and because we&#39;re not using reflections, it&#39;s easy to modify its edges to *force* it to tile without reflections.</p><p>These shapes, which we call &quot;Spectres&quot;, are &quot;strict chiral aperiodic monotiles&quot;: shapes that are forced to tile aperiodically, and can&#39;t use reflections! If you objected to the hat because of its reflections, this is the shape for you. (6/n)</p>" }, "attachment": [ { "type": "Document", "mediaType": "image/png", "url": "https://media.mathstodon.xyz/media_attachments/files/110/454/736/977/418/164/original/58bd8960b7183270.png", "name": "A patch of modified spectres, which tile aperiodically without ever using reflections.", "blurhash": "U3QJu|_4%gxu-=M{xvIUIUt8ayfjxuxvfPM{", "focalPoint": [ 0, 0 ], "width": 726, "height": 759 } ], "tag": [], "replies": { "id": "https://mathstodon.xyz/users/csk/statuses/110454742459648912/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/csk/statuses/110454742459648912/replies?min_id=110457572344294046&page=true", "partOf": "https://mathstodon.xyz/users/csk/statuses/110454742459648912/replies", "items": [ "https://mathstodon.xyz/users/csk/statuses/110457572344294046" ] } }, "likes": { "id": "https://mathstodon.xyz/users/csk/statuses/110454742459648912/likes", "type": "Collection", "totalItems": 211 }, "shares": { "id": "https://mathstodon.xyz/users/csk/statuses/110454742459648912/shares", "type": "Collection", "totalItems": 123 } }