A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount"
}
],
"id": "https://mathstodon.xyz/users/PedanticOwl/statuses/109314804626776529",
"type": "Note",
"summary": "Solution to (1)",
"inReplyTo": "https://mathstodon.xyz/users/PedanticOwl/statuses/109311337267102763",
"published": "2022-11-09T16:32:25Z",
"url": "https://mathstodon.xyz/@PedanticOwl/109314804626776529",
"attributedTo": "https://mathstodon.xyz/users/PedanticOwl",
"to": [
"https://www.w3.org/ns/activitystreams#Public"
],
"cc": [
"https://mathstodon.xyz/users/PedanticOwl/followers"
],
"sensitive": true,
"atomUri": "https://mathstodon.xyz/users/PedanticOwl/statuses/109314804626776529",
"inReplyToAtomUri": "https://mathstodon.xyz/users/PedanticOwl/statuses/109311337267102763",
"conversation": "tag:mathstodon.xyz,2022-11-09:objectId=28716228:objectType=Conversation",
"content": "<p>This part is pretty straightforward.</p><p>Assume, for a contradiction, that \\(x^2 = f(x)+g(x)\\), where \\(f\\) and \\(g\\) have nonzero periods \\(a\\) and \\(b\\). Then we have <br />\\[0^2=f(0)+g(0),\\]<br />\\[a^2=f(a)+g(a)=f(0)+g(a),\\]<br />\\[b^2=f(b)+g(b)=f(b)+g(0)\\text{, and}\\]<br />\\[(a+b)^2=f(a+b)+g(a+b)=f(b)+g(a).\\]<br />Therefore, \\((a+b)^2+0^2=a^2+b^2\\), which isn't true for nonzero \\(a\\) and \\(b\\).</p>",
"contentMap": {
"en": "<p>This part is pretty straightforward.</p><p>Assume, for a contradiction, that \\(x^2 = f(x)+g(x)\\), where \\(f\\) and \\(g\\) have nonzero periods \\(a\\) and \\(b\\). Then we have <br />\\[0^2=f(0)+g(0),\\]<br />\\[a^2=f(a)+g(a)=f(0)+g(a),\\]<br />\\[b^2=f(b)+g(b)=f(b)+g(0)\\text{, and}\\]<br />\\[(a+b)^2=f(a+b)+g(a+b)=f(b)+g(a).\\]<br />Therefore, \\((a+b)^2+0^2=a^2+b^2\\), which isn't true for nonzero \\(a\\) and \\(b\\).</p>"
},
"attachment": [],
"tag": [],
"replies": {
"id": "https://mathstodon.xyz/users/PedanticOwl/statuses/109314804626776529/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/PedanticOwl/statuses/109314804626776529/replies?only_other_accounts=true&page=true",
"partOf": "https://mathstodon.xyz/users/PedanticOwl/statuses/109314804626776529/replies",
"items": []
}
},
"likes": {
"id": "https://mathstodon.xyz/users/PedanticOwl/statuses/109314804626776529/likes",
"type": "Collection",
"totalItems": 1
},
"shares": {
"id": "https://mathstodon.xyz/users/PedanticOwl/statuses/109314804626776529/shares",
"type": "Collection",
"totalItems": 0
}
}