ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount" } ], "id": "https://mathstodon.xyz/users/PedanticOwl/statuses/109314804626776529", "type": "Note", "summary": "Solution to (1)", "inReplyTo": "https://mathstodon.xyz/users/PedanticOwl/statuses/109311337267102763", "published": "2022-11-09T16:32:25Z", "url": "https://mathstodon.xyz/@PedanticOwl/109314804626776529", "attributedTo": "https://mathstodon.xyz/users/PedanticOwl", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mathstodon.xyz/users/PedanticOwl/followers" ], "sensitive": true, "atomUri": "https://mathstodon.xyz/users/PedanticOwl/statuses/109314804626776529", "inReplyToAtomUri": "https://mathstodon.xyz/users/PedanticOwl/statuses/109311337267102763", "conversation": "tag:mathstodon.xyz,2022-11-09:objectId=28716228:objectType=Conversation", "content": "<p>This part is pretty straightforward.</p><p>Assume, for a contradiction, that \\(x^2 = f(x)+g(x)\\), where \\(f\\) and \\(g\\) have nonzero periods \\(a\\) and \\(b\\). Then we have <br />\\[0^2=f(0)+g(0),\\]<br />\\[a^2=f(a)+g(a)=f(0)+g(a),\\]<br />\\[b^2=f(b)+g(b)=f(b)+g(0)\\text{, and}\\]<br />\\[(a+b)^2=f(a+b)+g(a+b)=f(b)+g(a).\\]<br />Therefore, \\((a+b)^2+0^2=a^2+b^2\\), which isn&#39;t true for nonzero \\(a\\) and \\(b\\).</p>", "contentMap": { "en": "<p>This part is pretty straightforward.</p><p>Assume, for a contradiction, that \\(x^2 = f(x)+g(x)\\), where \\(f\\) and \\(g\\) have nonzero periods \\(a\\) and \\(b\\). Then we have <br />\\[0^2=f(0)+g(0),\\]<br />\\[a^2=f(a)+g(a)=f(0)+g(a),\\]<br />\\[b^2=f(b)+g(b)=f(b)+g(0)\\text{, and}\\]<br />\\[(a+b)^2=f(a+b)+g(a+b)=f(b)+g(a).\\]<br />Therefore, \\((a+b)^2+0^2=a^2+b^2\\), which isn&#39;t true for nonzero \\(a\\) and \\(b\\).</p>" }, "attachment": [], "tag": [], "replies": { "id": "https://mathstodon.xyz/users/PedanticOwl/statuses/109314804626776529/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/PedanticOwl/statuses/109314804626776529/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/PedanticOwl/statuses/109314804626776529/replies", "items": [] } }, "likes": { "id": "https://mathstodon.xyz/users/PedanticOwl/statuses/109314804626776529/likes", "type": "Collection", "totalItems": 1 }, "shares": { "id": "https://mathstodon.xyz/users/PedanticOwl/statuses/109314804626776529/shares", "type": "Collection", "totalItems": 0 } }