ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount" } ], "id": "https://mastodon.social/users/rexi/statuses/113870913956081667", "type": "Note", "summary": null, "inReplyTo": "https://mastodon.social/users/rexi/statuses/111684058639485722", "published": "2025-01-22T07:50:56Z", "url": "https://mastodon.social/@rexi/113870913956081667", "attributedTo": "https://mastodon.social/users/rexi", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mastodon.social/users/rexi/followers" ], "sensitive": false, "atomUri": "https://mastodon.social/users/rexi/statuses/113870913956081667", "inReplyToAtomUri": "https://mastodon.social/users/rexi/statuses/111684058639485722", "conversation": "tag:mastodon.social,2024-01-02:objectId=611359690:objectType=Conversation", "content": "<p><a href=\"https://phys.org/news/2025-01-peptides-microplastics.html\" target=\"_blank\" rel=\"nofollow noopener\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">phys.org/news/2025-01-peptides</span><span class=\"invisible\">-microplastics.html</span></a></p><p>biophysical modeling to predict peptide-plastic interactions at atomic resolution, then validated the results with molecular dynamics simulations. The process was optimized with the addition of quantum annealing and reinforcement learning—specifically a method known as proximal policy optimization.</p><p>Using these tools, the authors identified a set of plastic-binding peptides with high affinities for polyethylene and polypropylene.</p>", "contentMap": { "en": "<p><a href=\"https://phys.org/news/2025-01-peptides-microplastics.html\" target=\"_blank\" rel=\"nofollow noopener\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">phys.org/news/2025-01-peptides</span><span class=\"invisible\">-microplastics.html</span></a></p><p>biophysical modeling to predict peptide-plastic interactions at atomic resolution, then validated the results with molecular dynamics simulations. The process was optimized with the addition of quantum annealing and reinforcement learning—specifically a method known as proximal policy optimization.</p><p>Using these tools, the authors identified a set of plastic-binding peptides with high affinities for polyethylene and polypropylene.</p>" }, "attachment": [], "tag": [], "replies": { "id": "https://mastodon.social/users/rexi/statuses/113870913956081667/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mastodon.social/users/rexi/statuses/113870913956081667/replies?only_other_accounts=true&page=true", "partOf": "https://mastodon.social/users/rexi/statuses/113870913956081667/replies", "items": [] } }, "likes": { "id": "https://mastodon.social/users/rexi/statuses/113870913956081667/likes", "type": "Collection", "totalItems": 2 }, "shares": { "id": "https://mastodon.social/users/rexi/statuses/113870913956081667/shares", "type": "Collection", "totalItems": 1 } }