ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount", "blurhash": "toot:blurhash", "focalPoint": { "@container": "@list", "@id": "toot:focalPoint" }, "Hashtag": "as:Hashtag" } ], "id": "https://mastodon.social/users/persagen/statuses/110956893568888521", "type": "Note", "summary": null, "inReplyTo": null, "published": "2023-08-26T16:37:14Z", "url": "https://mastodon.social/@persagen/110956893568888521", "attributedTo": "https://mastodon.social/users/persagen", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mastodon.social/users/persagen/followers" ], "sensitive": false, "atomUri": "https://mastodon.social/users/persagen/statuses/110956893568888521", "inReplyToAtomUri": null, "conversation": "tag:mastodon.social,2023-08-26:objectId=522193476:objectType=Conversation", "content": "<p>Interpretable Graph Neural Networks for Tabular Data<br /><a href=\"https://arxiv.org/abs/2308.08945\" target=\"_blank\" rel=\"nofollow noopener\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">arxiv.org/abs/2308.08945</span><span class=\"invisible\"></span></a><br />Discussion: <a href=\"https://news.ycombinator.com/item?id=37269376\" target=\"_blank\" rel=\"nofollow noopener\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">news.ycombinator.com/item?id=3</span><span class=\"invisible\">7269376</span></a></p><p>* GNN essentially deep NN black-box models<br />* IGNNet: Interpretable Graph Neural Network for tab data<br />* notable HN comment, resp. to critique: &quot; Right, the significance of orig. article &amp; related research is ChatGPT-like models don&#39;t handle tabular data well &amp; there&#39;s need for things that do&quot;</p><p><a href=\"https://mastodon.social/tags/DataProcessing\" class=\"mention hashtag\" rel=\"tag\">#<span>DataProcessing</span></a> <a href=\"https://mastodon.social/tags/GraphNeuralNetworks\" class=\"mention hashtag\" rel=\"tag\">#<span>GraphNeuralNetworks</span></a> <a href=\"https://mastodon.social/tags/GNN\" class=\"mention hashtag\" rel=\"tag\">#<span>GNN</span></a> <a href=\"https://mastodon.social/tags/TabularData\" class=\"mention hashtag\" rel=\"tag\">#<span>TabularData</span></a> <a href=\"https://mastodon.social/tags/GPT\" class=\"mention hashtag\" rel=\"tag\">#<span>GPT</span></a> <a href=\"https://mastodon.social/tags/LLM\" class=\"mention hashtag\" rel=\"tag\">#<span>LLM</span></a> <a href=\"https://mastodon.social/tags/IGNNet\" class=\"mention hashtag\" rel=\"tag\">#<span>IGNNet</span></a></p>", "contentMap": { "en": "<p>Interpretable Graph Neural Networks for Tabular Data<br /><a href=\"https://arxiv.org/abs/2308.08945\" target=\"_blank\" rel=\"nofollow noopener\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">arxiv.org/abs/2308.08945</span><span class=\"invisible\"></span></a><br />Discussion: <a href=\"https://news.ycombinator.com/item?id=37269376\" target=\"_blank\" rel=\"nofollow noopener\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">news.ycombinator.com/item?id=3</span><span class=\"invisible\">7269376</span></a></p><p>* GNN essentially deep NN black-box models<br />* IGNNet: Interpretable Graph Neural Network for tab data<br />* notable HN comment, resp. to critique: &quot; Right, the significance of orig. article &amp; related research is ChatGPT-like models don&#39;t handle tabular data well &amp; there&#39;s need for things that do&quot;</p><p><a href=\"https://mastodon.social/tags/DataProcessing\" class=\"mention hashtag\" rel=\"tag\">#<span>DataProcessing</span></a> <a href=\"https://mastodon.social/tags/GraphNeuralNetworks\" class=\"mention hashtag\" rel=\"tag\">#<span>GraphNeuralNetworks</span></a> <a href=\"https://mastodon.social/tags/GNN\" class=\"mention hashtag\" rel=\"tag\">#<span>GNN</span></a> <a href=\"https://mastodon.social/tags/TabularData\" class=\"mention hashtag\" rel=\"tag\">#<span>TabularData</span></a> <a href=\"https://mastodon.social/tags/GPT\" class=\"mention hashtag\" rel=\"tag\">#<span>GPT</span></a> <a href=\"https://mastodon.social/tags/LLM\" class=\"mention hashtag\" rel=\"tag\">#<span>LLM</span></a> <a href=\"https://mastodon.social/tags/IGNNet\" class=\"mention hashtag\" rel=\"tag\">#<span>IGNNet</span></a></p>" }, "attachment": [ { "type": "Document", "mediaType": "image/png", "url": "https://files.mastodon.social/media_attachments/files/110/956/885/942/887/760/original/e058bc58031ef027.png", "name": "Interpretable Graph Neural Networks for Tabular Data\n\nFigure 1: An overview of our proposed approach. Each data instance is represented as a graph by embedding the feature values into a higher dimensionality, and the edge between two features (nodes) is the correlation value. Multiple iterations of message passing are then applied. Finally, the learned node representation is projected into a single value, and a whole graph representation is obtained by concatenating the projected values.\n\nFigure 2: IGNNet default architecture. It starts with the embedding layer, a linear transformation from one dimension to 64 dimensions. A Relu activation function follows each message-passing layer and each green block as well. The feedforward network at the end has no activation functions between layers to ensure a linear transformation into a single value. A sigmoid activation function follows the feedforward network to obtain the final value for each feature between 0 and 1.\n\nArticle: https://arxiv.org/pdf/2308.08945.pdf\n\nDiscussion (Hacker News): https://news.ycombinator.com/item?id=37269376\n\n", "blurhash": "U8S6PkRixuWC?boMxukCD%ozt6ay~qt6afV[", "focalPoint": [ -0.03, 0.58 ], "width": 1319, "height": 916 } ], "tag": [ { "type": "Hashtag", "href": "https://mastodon.social/tags/dataprocessing", "name": "#dataprocessing" }, { "type": "Hashtag", "href": "https://mastodon.social/tags/graphneuralnetworks", "name": "#graphneuralnetworks" }, { "type": "Hashtag", "href": "https://mastodon.social/tags/gnn", "name": "#gnn" }, { "type": "Hashtag", "href": "https://mastodon.social/tags/tabulardata", "name": "#tabulardata" }, { "type": "Hashtag", "href": "https://mastodon.social/tags/gpt", "name": "#gpt" }, { "type": "Hashtag", "href": "https://mastodon.social/tags/llm", "name": "#llm" }, { "type": "Hashtag", "href": "https://mastodon.social/tags/ignnet", "name": "#ignnet" } ], "replies": { "id": "https://mastodon.social/users/persagen/statuses/110956893568888521/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mastodon.social/users/persagen/statuses/110956893568888521/replies?only_other_accounts=true&page=true", "partOf": "https://mastodon.social/users/persagen/statuses/110956893568888521/replies", "items": [] } }, "likes": { "id": "https://mastodon.social/users/persagen/statuses/110956893568888521/likes", "type": "Collection", "totalItems": 3 }, "shares": { "id": "https://mastodon.social/users/persagen/statuses/110956893568888521/shares", "type": "Collection", "totalItems": 3 } }