ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount" } ], "id": "https://mastodon.social/users/jaklt/statuses/110335173678937161", "type": "Note", "summary": null, "inReplyTo": "https://mathstodon.xyz/users/MartinEscardo/statuses/110334640210111622", "published": "2023-05-08T21:25:41Z", "url": "https://mastodon.social/@jaklt/110335173678937161", "attributedTo": "https://mastodon.social/users/jaklt", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mastodon.social/users/jaklt/followers", "https://mathstodon.xyz/users/MartinEscardo" ], "sensitive": false, "atomUri": "https://mastodon.social/users/jaklt/statuses/110335173678937161", "inReplyToAtomUri": "https://mathstodon.xyz/users/MartinEscardo/statuses/110334640210111622", "conversation": "tag:mathstodon.xyz,2023-05-08:objectId=49904045:objectType=Conversation", "content": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@MartinEscardo\" class=\"u-url mention\">@<span>MartinEscardo</span></a></span> I myself would often appreciate such thing too. In our latest paper with Dan Marsden and Nihil Shah we work out Kleisli (functor lifting) laws in Kleisli form 🙂</p><p>(Btw: Manes should be mentioned with the relationship to &quot;Kleisli form&quot;, as the definition first appeared in his book. He gave it as an exercise...)</p>", "contentMap": { "en": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@MartinEscardo\" class=\"u-url mention\">@<span>MartinEscardo</span></a></span> I myself would often appreciate such thing too. In our latest paper with Dan Marsden and Nihil Shah we work out Kleisli (functor lifting) laws in Kleisli form 🙂</p><p>(Btw: Manes should be mentioned with the relationship to &quot;Kleisli form&quot;, as the definition first appeared in his book. He gave it as an exercise...)</p>" }, "attachment": [], "tag": [ { "type": "Mention", "href": "https://mathstodon.xyz/users/MartinEscardo", "name": "@MartinEscardo@mathstodon.xyz" } ], "replies": { "id": "https://mastodon.social/users/jaklt/statuses/110335173678937161/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mastodon.social/users/jaklt/statuses/110335173678937161/replies?only_other_accounts=true&page=true", "partOf": "https://mastodon.social/users/jaklt/statuses/110335173678937161/replies", "items": [] } }, "likes": { "id": "https://mastodon.social/users/jaklt/statuses/110335173678937161/likes", "type": "Collection", "totalItems": 1 }, "shares": { "id": "https://mastodon.social/users/jaklt/statuses/110335173678937161/shares", "type": "Collection", "totalItems": 0 } }