ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount", "blurhash": "toot:blurhash", "focalPoint": { "@container": "@list", "@id": "toot:focalPoint" }, "Hashtag": "as:Hashtag" } ], "id": "https://mastodon.social/users/StatisticsGlobe/statuses/113429356512387474", "type": "Note", "summary": null, "inReplyTo": null, "published": "2024-11-05T08:17:04Z", "url": "https://mastodon.social/@StatisticsGlobe/113429356512387474", "attributedTo": "https://mastodon.social/users/StatisticsGlobe", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mastodon.social/users/StatisticsGlobe/followers" ], "sensitive": false, "atomUri": "https://mastodon.social/users/StatisticsGlobe/statuses/113429356512387474", "inReplyToAtomUri": null, "conversation": "tag:mastodon.social,2024-11-05:objectId=839993162:objectType=Conversation", "content": "<p>In Bayesian inference, a credible interval is a range of values within which a parameter lies with a certain probability, given the observed data and prior beliefs. The image of this post (based on this Wikipedia image: <a href=\"https://en.wikipedia.org/wiki/Credible_interval#/media/File:Highest_posterior_density_interval.svg\" target=\"_blank\" rel=\"nofollow noopener\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">en.wikipedia.org/wiki/Credible</span><span class=\"invisible\">_interval#/media/File:Highest_posterior_density_interval.svg</span></a>) represents a 90% highest-density credible interval of a posterior probability distribution.</p><p>More details: <a href=\"http://eepurl.com/gH6myT\" target=\"_blank\" rel=\"nofollow noopener\" translate=\"no\"><span class=\"invisible\">http://</span><span class=\"\">eepurl.com/gH6myT</span><span class=\"invisible\"></span></a></p><p><a href=\"https://mastodon.social/tags/statistical\" class=\"mention hashtag\" rel=\"tag\">#<span>statistical</span></a> <a href=\"https://mastodon.social/tags/datasciencecourse\" class=\"mention hashtag\" rel=\"tag\">#<span>datasciencecourse</span></a> <a href=\"https://mastodon.social/tags/datascience\" class=\"mention hashtag\" rel=\"tag\">#<span>datascience</span></a> <a href=\"https://mastodon.social/tags/rprogramming\" class=\"mention hashtag\" rel=\"tag\">#<span>rprogramming</span></a> <a href=\"https://mastodon.social/tags/datastructure\" class=\"mention hashtag\" rel=\"tag\">#<span>datastructure</span></a></p>", "contentMap": { "en": "<p>In Bayesian inference, a credible interval is a range of values within which a parameter lies with a certain probability, given the observed data and prior beliefs. The image of this post (based on this Wikipedia image: <a href=\"https://en.wikipedia.org/wiki/Credible_interval#/media/File:Highest_posterior_density_interval.svg\" target=\"_blank\" rel=\"nofollow noopener\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">en.wikipedia.org/wiki/Credible</span><span class=\"invisible\">_interval#/media/File:Highest_posterior_density_interval.svg</span></a>) represents a 90% highest-density credible interval of a posterior probability distribution.</p><p>More details: <a href=\"http://eepurl.com/gH6myT\" target=\"_blank\" rel=\"nofollow noopener\" translate=\"no\"><span class=\"invisible\">http://</span><span class=\"\">eepurl.com/gH6myT</span><span class=\"invisible\"></span></a></p><p><a href=\"https://mastodon.social/tags/statistical\" class=\"mention hashtag\" rel=\"tag\">#<span>statistical</span></a> <a href=\"https://mastodon.social/tags/datasciencecourse\" class=\"mention hashtag\" rel=\"tag\">#<span>datasciencecourse</span></a> <a href=\"https://mastodon.social/tags/datascience\" class=\"mention hashtag\" rel=\"tag\">#<span>datascience</span></a> <a href=\"https://mastodon.social/tags/rprogramming\" class=\"mention hashtag\" rel=\"tag\">#<span>rprogramming</span></a> <a href=\"https://mastodon.social/tags/datastructure\" class=\"mention hashtag\" rel=\"tag\">#<span>datastructure</span></a></p>" }, "attachment": [ { "type": "Document", "mediaType": "image/png", "url": "https://files.mastodon.social/media_attachments/files/113/429/356/312/130/742/original/0ab76c7d77317d85.png", "name": null, "blurhash": "UQNTeM4Y.7.64hxsIWV]0T%LV_IW4wR*%Kt6", "width": 1024, "height": 584 } ], "tag": [ { "type": "Hashtag", "href": "https://mastodon.social/tags/statistical", "name": "#statistical" }, { "type": "Hashtag", "href": "https://mastodon.social/tags/datasciencecourse", "name": "#datasciencecourse" }, { "type": "Hashtag", "href": "https://mastodon.social/tags/datascience", "name": "#datascience" }, { "type": "Hashtag", "href": "https://mastodon.social/tags/rprogramming", "name": "#rprogramming" }, { "type": "Hashtag", "href": "https://mastodon.social/tags/datastructure", "name": "#datastructure" } ], "replies": { "id": "https://mastodon.social/users/StatisticsGlobe/statuses/113429356512387474/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mastodon.social/users/StatisticsGlobe/statuses/113429356512387474/replies?only_other_accounts=true&page=true", "partOf": "https://mastodon.social/users/StatisticsGlobe/statuses/113429356512387474/replies", "items": [] } }, "likes": { "id": "https://mastodon.social/users/StatisticsGlobe/statuses/113429356512387474/likes", "type": "Collection", "totalItems": 0 }, "shares": { "id": "https://mastodon.social/users/StatisticsGlobe/statuses/113429356512387474/shares", "type": "Collection", "totalItems": 0 } }