ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount", "Hashtag": "as:Hashtag" } ], "id": "https://mastodon.social/users/katchwreck/statuses/109300003276375597", "type": "Note", "summary": null, "inReplyTo": null, "published": "2022-11-07T01:48:14Z", "url": "https://mastodon.social/@katchwreck/109300003276375597", "attributedTo": "https://mastodon.social/users/katchwreck", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mastodon.social/users/katchwreck/followers" ], "sensitive": false, "atomUri": "https://mastodon.social/users/katchwreck/statuses/109300003276375597", "inReplyToAtomUri": null, "conversation": "tag:mastodon.social,2022-11-07:objectId=326629614:objectType=Conversation", "content": "<p>my most recent publication is also my 1st sole-authored paper. it brings transparency to graph Laplacian methods by converting the eigenvector subspace to a topologically-informed probabilistic/fuzzy/soft embedding of the graph nodes. the source code is not available because i am working on commercial applications of this technique. if anyone has a graph/network analysis problem they want to try it on, please let me know! maybe we can develop a product for it :) <a href=\"https://mastodon.social/tags/ml\" class=\"mention hashtag\" rel=\"tag\">#<span>ml</span></a> </p><p><a href=\"https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204096\" target=\"_blank\" rel=\"nofollow noopener\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">journals.plos.org/plosone/arti</span><span class=\"invisible\">cle?id=10.1371/journal.pone.0204096</span></a></p>", "contentMap": { "en": "<p>my most recent publication is also my 1st sole-authored paper. it brings transparency to graph Laplacian methods by converting the eigenvector subspace to a topologically-informed probabilistic/fuzzy/soft embedding of the graph nodes. the source code is not available because i am working on commercial applications of this technique. if anyone has a graph/network analysis problem they want to try it on, please let me know! maybe we can develop a product for it :) <a href=\"https://mastodon.social/tags/ml\" class=\"mention hashtag\" rel=\"tag\">#<span>ml</span></a> </p><p><a href=\"https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204096\" target=\"_blank\" rel=\"nofollow noopener\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">journals.plos.org/plosone/arti</span><span class=\"invisible\">cle?id=10.1371/journal.pone.0204096</span></a></p>" }, "updated": "2022-11-07T01:51:45Z", "attachment": [], "tag": [ { "type": "Hashtag", "href": "https://mastodon.social/tags/ml", "name": "#ml" } ], "replies": { "id": "https://mastodon.social/users/katchwreck/statuses/109300003276375597/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mastodon.social/users/katchwreck/statuses/109300003276375597/replies?only_other_accounts=true&page=true", "partOf": "https://mastodon.social/users/katchwreck/statuses/109300003276375597/replies", "items": [] } }, "likes": { "id": "https://mastodon.social/users/katchwreck/statuses/109300003276375597/likes", "type": "Collection", "totalItems": 9 }, "shares": { "id": "https://mastodon.social/users/katchwreck/statuses/109300003276375597/shares", "type": "Collection", "totalItems": 6 } }