A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount",
"blurhash": "toot:blurhash",
"focalPoint": {
"@container": "@list",
"@id": "toot:focalPoint"
},
"Hashtag": "as:Hashtag"
}
],
"id": "https://floss.social/users/LabPlot/statuses/113429808878428007",
"type": "Note",
"summary": null,
"inReplyTo": null,
"published": "2024-11-05T10:12:07Z",
"url": "https://floss.social/@LabPlot/113429808878428007",
"attributedTo": "https://floss.social/users/LabPlot",
"to": [
"https://www.w3.org/ns/activitystreams#Public"
],
"cc": [
"https://floss.social/users/LabPlot/followers",
"https://lemmy.kde.social/u/labplot"
],
"sensitive": false,
"atomUri": "https://floss.social/users/LabPlot/statuses/113429808878428007",
"inReplyToAtomUri": null,
"conversation": "tag:floss.social,2024-11-05:objectId=73055689:objectType=Conversation",
"content": "<p>We've just written a blog post on the performance of <a href=\"https://floss.social/tags/BigData\" class=\"mention hashtag\" rel=\"tag\">#<span>BigData</span></a> import in <a href=\"https://floss.social/tags/LabPlot\" class=\"mention hashtag\" rel=\"tag\">#<span>LabPlot</span></a>. </p><p><span class=\"h-card\" translate=\"no\"><a href=\"https://lemmy.kde.social/u/labplot\" class=\"u-url mention\">@<span>labplot@lemmy.kde.social</span></a></span> </p><p>Boosts appreciated 🚀</p><p>For this test, we import the data set with 1 integer column and 5 columns of float values (a Brownian motion for 5 "particles") with 50 million of rows which results in 300 million of numerical values. All the values have been visualized in LabPlot.</p><p>Check out the results!</p><p>➡️ <a href=\"https://labplot.kde.org/2024/11/05/performance-of-data-import-in-labplot\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">labplot.kde.org/2024/11/05/per</span><span class=\"invisible\">formance-of-data-import-in-labplot</span></a></p><p><a href=\"https://floss.social/tags/Data\" class=\"mention hashtag\" rel=\"tag\">#<span>Data</span></a> <a href=\"https://floss.social/tags/Visualization\" class=\"mention hashtag\" rel=\"tag\">#<span>Visualization</span></a> <a href=\"https://floss.social/tags/OpenSource\" class=\"mention hashtag\" rel=\"tag\">#<span>OpenSource</span></a> <a href=\"https://floss.social/tags/FOSS\" class=\"mention hashtag\" rel=\"tag\">#<span>FOSS</span></a> <a href=\"https://floss.social/tags/Robotics\" class=\"mention hashtag\" rel=\"tag\">#<span>Robotics</span></a> <a href=\"https://floss.social/tags/IoT\" class=\"mention hashtag\" rel=\"tag\">#<span>IoT</span></a> <a href=\"https://floss.social/tags/Engineering\" class=\"mention hashtag\" rel=\"tag\">#<span>Engineering</span></a> <a href=\"https://floss.social/tags/Tech\" class=\"mention hashtag\" rel=\"tag\">#<span>Tech</span></a> <a href=\"https://floss.social/tags/Physics\" class=\"mention hashtag\" rel=\"tag\">#<span>Physics</span></a></p>",
"contentMap": {
"en": "<p>We've just written a blog post on the performance of <a href=\"https://floss.social/tags/BigData\" class=\"mention hashtag\" rel=\"tag\">#<span>BigData</span></a> import in <a href=\"https://floss.social/tags/LabPlot\" class=\"mention hashtag\" rel=\"tag\">#<span>LabPlot</span></a>. </p><p><span class=\"h-card\" translate=\"no\"><a href=\"https://lemmy.kde.social/u/labplot\" class=\"u-url mention\">@<span>labplot@lemmy.kde.social</span></a></span> </p><p>Boosts appreciated 🚀</p><p>For this test, we import the data set with 1 integer column and 5 columns of float values (a Brownian motion for 5 "particles") with 50 million of rows which results in 300 million of numerical values. All the values have been visualized in LabPlot.</p><p>Check out the results!</p><p>➡️ <a href=\"https://labplot.kde.org/2024/11/05/performance-of-data-import-in-labplot\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">labplot.kde.org/2024/11/05/per</span><span class=\"invisible\">formance-of-data-import-in-labplot</span></a></p><p><a href=\"https://floss.social/tags/Data\" class=\"mention hashtag\" rel=\"tag\">#<span>Data</span></a> <a href=\"https://floss.social/tags/Visualization\" class=\"mention hashtag\" rel=\"tag\">#<span>Visualization</span></a> <a href=\"https://floss.social/tags/OpenSource\" class=\"mention hashtag\" rel=\"tag\">#<span>OpenSource</span></a> <a href=\"https://floss.social/tags/FOSS\" class=\"mention hashtag\" rel=\"tag\">#<span>FOSS</span></a> <a href=\"https://floss.social/tags/Robotics\" class=\"mention hashtag\" rel=\"tag\">#<span>Robotics</span></a> <a href=\"https://floss.social/tags/IoT\" class=\"mention hashtag\" rel=\"tag\">#<span>IoT</span></a> <a href=\"https://floss.social/tags/Engineering\" class=\"mention hashtag\" rel=\"tag\">#<span>Engineering</span></a> <a href=\"https://floss.social/tags/Tech\" class=\"mention hashtag\" rel=\"tag\">#<span>Tech</span></a> <a href=\"https://floss.social/tags/Physics\" class=\"mention hashtag\" rel=\"tag\">#<span>Physics</span></a></p>"
},
"updated": "2024-11-05T15:14:59Z",
"attachment": [
{
"type": "Document",
"mediaType": "image/png",
"url": "https://cdn.masto.host/floss/media_attachments/files/113/429/793/937/884/371/original/f2b1a484d6f7c65f.png",
"name": "A plot: 300 million values visualized in LabPlot",
"blurhash": "U36khnafRkaeIUV@oyt78{xbtPWW_MtkR7V@",
"focalPoint": [
0,
0
],
"width": 1024,
"height": 585
}
],
"tag": [
{
"type": "Mention",
"href": "https://lemmy.kde.social/u/labplot",
"name": "@labplot@lemmy.kde.social"
},
{
"type": "Hashtag",
"href": "https://floss.social/tags/labplot",
"name": "#labplot"
},
{
"type": "Hashtag",
"href": "https://floss.social/tags/data",
"name": "#data"
},
{
"type": "Hashtag",
"href": "https://floss.social/tags/BigData",
"name": "#BigData"
},
{
"type": "Hashtag",
"href": "https://floss.social/tags/OpenSource",
"name": "#OpenSource"
},
{
"type": "Hashtag",
"href": "https://floss.social/tags/FOSS",
"name": "#FOSS"
},
{
"type": "Hashtag",
"href": "https://floss.social/tags/robotics",
"name": "#robotics"
},
{
"type": "Hashtag",
"href": "https://floss.social/tags/IOT",
"name": "#IOT"
},
{
"type": "Hashtag",
"href": "https://floss.social/tags/engineering",
"name": "#engineering"
},
{
"type": "Hashtag",
"href": "https://floss.social/tags/tech",
"name": "#tech"
},
{
"type": "Hashtag",
"href": "https://floss.social/tags/visualization",
"name": "#visualization"
},
{
"type": "Hashtag",
"href": "https://floss.social/tags/physics",
"name": "#physics"
}
],
"replies": {
"id": "https://floss.social/users/LabPlot/statuses/113429808878428007/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://floss.social/users/LabPlot/statuses/113429808878428007/replies?only_other_accounts=true&page=true",
"partOf": "https://floss.social/users/LabPlot/statuses/113429808878428007/replies",
"items": []
}
},
"likes": {
"id": "https://floss.social/users/LabPlot/statuses/113429808878428007/likes",
"type": "Collection",
"totalItems": 20
},
"shares": {
"id": "https://floss.social/users/LabPlot/statuses/113429808878428007/shares",
"type": "Collection",
"totalItems": 12
}
}