ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount", "blurhash": "toot:blurhash", "focalPoint": { "@container": "@list", "@id": "toot:focalPoint" }, "Hashtag": "as:Hashtag" } ], "id": "https://floss.social/users/LabPlot/statuses/113429808878428007", "type": "Note", "summary": null, "inReplyTo": null, "published": "2024-11-05T10:12:07Z", "url": "https://floss.social/@LabPlot/113429808878428007", "attributedTo": "https://floss.social/users/LabPlot", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://floss.social/users/LabPlot/followers", "https://lemmy.kde.social/u/labplot" ], "sensitive": false, "atomUri": "https://floss.social/users/LabPlot/statuses/113429808878428007", "inReplyToAtomUri": null, "conversation": "tag:floss.social,2024-11-05:objectId=73055689:objectType=Conversation", "content": "<p>We&#39;ve just written a blog post on the performance of <a href=\"https://floss.social/tags/BigData\" class=\"mention hashtag\" rel=\"tag\">#<span>BigData</span></a> import in <a href=\"https://floss.social/tags/LabPlot\" class=\"mention hashtag\" rel=\"tag\">#<span>LabPlot</span></a>. </p><p><span class=\"h-card\" translate=\"no\"><a href=\"https://lemmy.kde.social/u/labplot\" class=\"u-url mention\">@<span>labplot@lemmy.kde.social</span></a></span> </p><p>Boosts appreciated 🚀</p><p>For this test, we import the data set with 1 integer column and 5 columns of float values (a Brownian motion for 5 &quot;particles&quot;) with 50 million of rows which results in 300 million of numerical values. All the values have been visualized in LabPlot.</p><p>Check out the results!</p><p>➡️ <a href=\"https://labplot.kde.org/2024/11/05/performance-of-data-import-in-labplot\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">labplot.kde.org/2024/11/05/per</span><span class=\"invisible\">formance-of-data-import-in-labplot</span></a></p><p><a href=\"https://floss.social/tags/Data\" class=\"mention hashtag\" rel=\"tag\">#<span>Data</span></a> <a href=\"https://floss.social/tags/Visualization\" class=\"mention hashtag\" rel=\"tag\">#<span>Visualization</span></a> <a href=\"https://floss.social/tags/OpenSource\" class=\"mention hashtag\" rel=\"tag\">#<span>OpenSource</span></a> <a href=\"https://floss.social/tags/FOSS\" class=\"mention hashtag\" rel=\"tag\">#<span>FOSS</span></a> <a href=\"https://floss.social/tags/Robotics\" class=\"mention hashtag\" rel=\"tag\">#<span>Robotics</span></a> <a href=\"https://floss.social/tags/IoT\" class=\"mention hashtag\" rel=\"tag\">#<span>IoT</span></a> <a href=\"https://floss.social/tags/Engineering\" class=\"mention hashtag\" rel=\"tag\">#<span>Engineering</span></a> <a href=\"https://floss.social/tags/Tech\" class=\"mention hashtag\" rel=\"tag\">#<span>Tech</span></a> <a href=\"https://floss.social/tags/Physics\" class=\"mention hashtag\" rel=\"tag\">#<span>Physics</span></a></p>", "contentMap": { "en": "<p>We&#39;ve just written a blog post on the performance of <a href=\"https://floss.social/tags/BigData\" class=\"mention hashtag\" rel=\"tag\">#<span>BigData</span></a> import in <a href=\"https://floss.social/tags/LabPlot\" class=\"mention hashtag\" rel=\"tag\">#<span>LabPlot</span></a>. </p><p><span class=\"h-card\" translate=\"no\"><a href=\"https://lemmy.kde.social/u/labplot\" class=\"u-url mention\">@<span>labplot@lemmy.kde.social</span></a></span> </p><p>Boosts appreciated 🚀</p><p>For this test, we import the data set with 1 integer column and 5 columns of float values (a Brownian motion for 5 &quot;particles&quot;) with 50 million of rows which results in 300 million of numerical values. All the values have been visualized in LabPlot.</p><p>Check out the results!</p><p>➡️ <a href=\"https://labplot.kde.org/2024/11/05/performance-of-data-import-in-labplot\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">labplot.kde.org/2024/11/05/per</span><span class=\"invisible\">formance-of-data-import-in-labplot</span></a></p><p><a href=\"https://floss.social/tags/Data\" class=\"mention hashtag\" rel=\"tag\">#<span>Data</span></a> <a href=\"https://floss.social/tags/Visualization\" class=\"mention hashtag\" rel=\"tag\">#<span>Visualization</span></a> <a href=\"https://floss.social/tags/OpenSource\" class=\"mention hashtag\" rel=\"tag\">#<span>OpenSource</span></a> <a href=\"https://floss.social/tags/FOSS\" class=\"mention hashtag\" rel=\"tag\">#<span>FOSS</span></a> <a href=\"https://floss.social/tags/Robotics\" class=\"mention hashtag\" rel=\"tag\">#<span>Robotics</span></a> <a href=\"https://floss.social/tags/IoT\" class=\"mention hashtag\" rel=\"tag\">#<span>IoT</span></a> <a href=\"https://floss.social/tags/Engineering\" class=\"mention hashtag\" rel=\"tag\">#<span>Engineering</span></a> <a href=\"https://floss.social/tags/Tech\" class=\"mention hashtag\" rel=\"tag\">#<span>Tech</span></a> <a href=\"https://floss.social/tags/Physics\" class=\"mention hashtag\" rel=\"tag\">#<span>Physics</span></a></p>" }, "updated": "2024-11-05T15:14:59Z", "attachment": [ { "type": "Document", "mediaType": "image/png", "url": "https://cdn.masto.host/floss/media_attachments/files/113/429/793/937/884/371/original/f2b1a484d6f7c65f.png", "name": "A plot: 300 million values visualized in LabPlot", "blurhash": "U36khnafRkaeIUV@oyt78{xbtPWW_MtkR7V@", "focalPoint": [ 0, 0 ], "width": 1024, "height": 585 } ], "tag": [ { "type": "Mention", "href": "https://lemmy.kde.social/u/labplot", "name": "@labplot@lemmy.kde.social" }, { "type": "Hashtag", "href": "https://floss.social/tags/labplot", "name": "#labplot" }, { "type": "Hashtag", "href": "https://floss.social/tags/data", "name": "#data" }, { "type": "Hashtag", "href": "https://floss.social/tags/BigData", "name": "#BigData" }, { "type": "Hashtag", "href": "https://floss.social/tags/OpenSource", "name": "#OpenSource" }, { "type": "Hashtag", "href": "https://floss.social/tags/FOSS", "name": "#FOSS" }, { "type": "Hashtag", "href": "https://floss.social/tags/robotics", "name": "#robotics" }, { "type": "Hashtag", "href": "https://floss.social/tags/IOT", "name": "#IOT" }, { "type": "Hashtag", "href": "https://floss.social/tags/engineering", "name": "#engineering" }, { "type": "Hashtag", "href": "https://floss.social/tags/tech", "name": "#tech" }, { "type": "Hashtag", "href": "https://floss.social/tags/visualization", "name": "#visualization" }, { "type": "Hashtag", "href": "https://floss.social/tags/physics", "name": "#physics" } ], "replies": { "id": "https://floss.social/users/LabPlot/statuses/113429808878428007/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://floss.social/users/LabPlot/statuses/113429808878428007/replies?only_other_accounts=true&page=true", "partOf": "https://floss.social/users/LabPlot/statuses/113429808878428007/replies", "items": [] } }, "likes": { "id": "https://floss.social/users/LabPlot/statuses/113429808878428007/likes", "type": "Collection", "totalItems": 20 }, "shares": { "id": "https://floss.social/users/LabPlot/statuses/113429808878428007/shares", "type": "Collection", "totalItems": 12 } }