ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount" } ], "id": "https://ellis.social/users/nolovedeeplearning/statuses/110065808895703059", "type": "Note", "summary": null, "inReplyTo": "https://mastodon.social/users/emtiyaz/statuses/110064620427056633", "published": "2023-03-22T07:42:40Z", "url": "https://ellis.social/@nolovedeeplearning/110065808895703059", "attributedTo": "https://ellis.social/users/nolovedeeplearning", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://ellis.social/users/nolovedeeplearning/followers", "https://mastodon.social/users/emtiyaz" ], "sensitive": false, "atomUri": "https://ellis.social/users/nolovedeeplearning/statuses/110065808895703059", "inReplyToAtomUri": "https://mastodon.social/users/emtiyaz/statuses/110064620427056633", "conversation": "tag:ellis.social,2023-03-21:objectId=1924449:objectType=Conversation", "content": "<p><span class=\"h-card\"><a href=\"https://mastodon.social/@emtiyaz\" class=\"u-url mention\">@<span>emtiyaz</span></a></span> very true!<br />If I may add, all the metrics for forgetting (and transfer) we have nowadays only give a very &quot;partial&quot; story: the measure some instantaneous change in downstream performance. But what about what the inner representations that the model has learned?</p>", "contentMap": { "en": "<p><span class=\"h-card\"><a href=\"https://mastodon.social/@emtiyaz\" class=\"u-url mention\">@<span>emtiyaz</span></a></span> very true!<br />If I may add, all the metrics for forgetting (and transfer) we have nowadays only give a very &quot;partial&quot; story: the measure some instantaneous change in downstream performance. But what about what the inner representations that the model has learned?</p>" }, "attachment": [], "tag": [ { "type": "Mention", "href": "https://mastodon.social/users/emtiyaz", "name": "@emtiyaz@mastodon.social" } ], "replies": { "id": "https://ellis.social/users/nolovedeeplearning/statuses/110065808895703059/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://ellis.social/users/nolovedeeplearning/statuses/110065808895703059/replies?only_other_accounts=true&page=true", "partOf": "https://ellis.social/users/nolovedeeplearning/statuses/110065808895703059/replies", "items": [] } } }